[ Index ]

PHP Cross Reference of Unnamed Project

title

Body

[close]

/lib/phpexcel/PHPExcel/Shared/JAMA/ -> EigenvalueDecomposition.php (source)

   1  <?php
   2  /**
   3   *    @package JAMA
   4   *
   5   *    Class to obtain eigenvalues and eigenvectors of a real matrix.
   6   *
   7   *    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
   8   *    is diagonal and the eigenvector matrix V is orthogonal (i.e.
   9   *    A = V.times(D.times(V.transpose())) and V.times(V.transpose())
  10   *    equals the identity matrix).
  11   *
  12   *    If A is not symmetric, then the eigenvalue matrix D is block diagonal
  13   *    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
  14   *    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
  15   *    columns of V represent the eigenvectors in the sense that A*V = V*D,
  16   *    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
  17   *    conditioned, or even singular, so the validity of the equation
  18   *    A = V*D*inverse(V) depends upon V.cond().
  19   *
  20   *    @author  Paul Meagher
  21   *    @license PHP v3.0
  22   *    @version 1.1
  23   */
  24  class EigenvalueDecomposition
  25  {
  26      /**
  27       *    Row and column dimension (square matrix).
  28       *    @var int
  29       */
  30      private $n;
  31  
  32      /**
  33       *    Internal symmetry flag.
  34       *    @var int
  35       */
  36      private $issymmetric;
  37  
  38      /**
  39       *    Arrays for internal storage of eigenvalues.
  40       *    @var array
  41       */
  42      private $d = array();
  43      private $e = array();
  44  
  45      /**
  46       *    Array for internal storage of eigenvectors.
  47       *    @var array
  48       */
  49      private $V = array();
  50  
  51      /**
  52      *    Array for internal storage of nonsymmetric Hessenberg form.
  53      *    @var array
  54      */
  55      private $H = array();
  56  
  57      /**
  58      *    Working storage for nonsymmetric algorithm.
  59      *    @var array
  60      */
  61      private $ort;
  62  
  63      /**
  64      *    Used for complex scalar division.
  65      *    @var float
  66      */
  67      private $cdivr;
  68      private $cdivi;
  69  
  70      /**
  71       *    Symmetric Householder reduction to tridiagonal form.
  72       *
  73       *    @access private
  74       */
  75      private function tred2()
  76      {
  77          //  This is derived from the Algol procedures tred2 by
  78          //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
  79          //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
  80          //  Fortran subroutine in EISPACK.
  81          $this->d = $this->V[$this->n-1];
  82          // Householder reduction to tridiagonal form.
  83          for ($i = $this->n-1; $i > 0; --$i) {
  84              $i_ = $i -1;
  85              // Scale to avoid under/overflow.
  86              $h = $scale = 0.0;
  87              $scale += array_sum(array_map(abs, $this->d));
  88              if ($scale == 0.0) {
  89                  $this->e[$i] = $this->d[$i_];
  90                  $this->d = array_slice($this->V[$i_], 0, $i_);
  91                  for ($j = 0; $j < $i; ++$j) {
  92                      $this->V[$j][$i] = $this->V[$i][$j] = 0.0;
  93                  }
  94              } else {
  95                  // Generate Householder vector.
  96                  for ($k = 0; $k < $i; ++$k) {
  97                      $this->d[$k] /= $scale;
  98                      $h += pow($this->d[$k], 2);
  99                  }
 100                  $f = $this->d[$i_];
 101                  $g = sqrt($h);
 102                  if ($f > 0) {
 103                      $g = -$g;
 104                  }
 105                  $this->e[$i] = $scale * $g;
 106                  $h = $h - $f * $g;
 107                  $this->d[$i_] = $f - $g;
 108                  for ($j = 0; $j < $i; ++$j) {
 109                      $this->e[$j] = 0.0;
 110                  }
 111                  // Apply similarity transformation to remaining columns.
 112                  for ($j = 0; $j < $i; ++$j) {
 113                      $f = $this->d[$j];
 114                      $this->V[$j][$i] = $f;
 115                      $g = $this->e[$j] + $this->V[$j][$j] * $f;
 116                      for ($k = $j+1; $k <= $i_; ++$k) {
 117                          $g += $this->V[$k][$j] * $this->d[$k];
 118                          $this->e[$k] += $this->V[$k][$j] * $f;
 119                      }
 120                      $this->e[$j] = $g;
 121                  }
 122                  $f = 0.0;
 123                  for ($j = 0; $j < $i; ++$j) {
 124                      $this->e[$j] /= $h;
 125                      $f += $this->e[$j] * $this->d[$j];
 126                  }
 127                  $hh = $f / (2 * $h);
 128                  for ($j=0; $j < $i; ++$j) {
 129                      $this->e[$j] -= $hh * $this->d[$j];
 130                  }
 131                  for ($j = 0; $j < $i; ++$j) {
 132                      $f = $this->d[$j];
 133                      $g = $this->e[$j];
 134                      for ($k = $j; $k <= $i_; ++$k) {
 135                          $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
 136                      }
 137                      $this->d[$j] = $this->V[$i-1][$j];
 138                      $this->V[$i][$j] = 0.0;
 139                  }
 140              }
 141              $this->d[$i] = $h;
 142          }
 143  
 144          // Accumulate transformations.
 145          for ($i = 0; $i < $this->n-1; ++$i) {
 146              $this->V[$this->n-1][$i] = $this->V[$i][$i];
 147              $this->V[$i][$i] = 1.0;
 148              $h = $this->d[$i+1];
 149              if ($h != 0.0) {
 150                  for ($k = 0; $k <= $i; ++$k) {
 151                      $this->d[$k] = $this->V[$k][$i+1] / $h;
 152                  }
 153                  for ($j = 0; $j <= $i; ++$j) {
 154                      $g = 0.0;
 155                      for ($k = 0; $k <= $i; ++$k) {
 156                          $g += $this->V[$k][$i+1] * $this->V[$k][$j];
 157                      }
 158                      for ($k = 0; $k <= $i; ++$k) {
 159                          $this->V[$k][$j] -= $g * $this->d[$k];
 160                      }
 161                  }
 162              }
 163              for ($k = 0; $k <= $i; ++$k) {
 164                  $this->V[$k][$i+1] = 0.0;
 165              }
 166          }
 167  
 168          $this->d = $this->V[$this->n-1];
 169          $this->V[$this->n-1] = array_fill(0, $j, 0.0);
 170          $this->V[$this->n-1][$this->n-1] = 1.0;
 171          $this->e[0] = 0.0;
 172      }
 173  
 174      /**
 175       *    Symmetric tridiagonal QL algorithm.
 176       *
 177       *    This is derived from the Algol procedures tql2, by
 178       *    Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
 179       *    Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 180       *    Fortran subroutine in EISPACK.
 181       *
 182       *    @access private
 183       */
 184      private function tql2()
 185      {
 186          for ($i = 1; $i < $this->n; ++$i) {
 187              $this->e[$i-1] = $this->e[$i];
 188          }
 189          $this->e[$this->n-1] = 0.0;
 190          $f = 0.0;
 191          $tst1 = 0.0;
 192          $eps  = pow(2.0, -52.0);
 193  
 194          for ($l = 0; $l < $this->n; ++$l) {
 195              // Find small subdiagonal element
 196              $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
 197              $m = $l;
 198              while ($m < $this->n) {
 199                  if (abs($this->e[$m]) <= $eps * $tst1) {
 200                      break;
 201                  }
 202                  ++$m;
 203              }
 204              // If m == l, $this->d[l] is an eigenvalue,
 205              // otherwise, iterate.
 206              if ($m > $l) {
 207                  $iter = 0;
 208                  do {
 209                      // Could check iteration count here.
 210                      $iter += 1;
 211                      // Compute implicit shift
 212                      $g = $this->d[$l];
 213                      $p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]);
 214                      $r = hypo($p, 1.0);
 215                      if ($p < 0) {
 216                          $r *= -1;
 217                      }
 218                      $this->d[$l] = $this->e[$l] / ($p + $r);
 219                      $this->d[$l+1] = $this->e[$l] * ($p + $r);
 220                      $dl1 = $this->d[$l+1];
 221                      $h = $g - $this->d[$l];
 222                      for ($i = $l + 2; $i < $this->n; ++$i) {
 223                          $this->d[$i] -= $h;
 224                      }
 225                      $f += $h;
 226                      // Implicit QL transformation.
 227                      $p = $this->d[$m];
 228                      $c = 1.0;
 229                      $c2 = $c3 = $c;
 230                      $el1 = $this->e[$l + 1];
 231                      $s = $s2 = 0.0;
 232                      for ($i = $m-1; $i >= $l; --$i) {
 233                          $c3 = $c2;
 234                          $c2 = $c;
 235                          $s2 = $s;
 236                          $g  = $c * $this->e[$i];
 237                          $h  = $c * $p;
 238                          $r  = hypo($p, $this->e[$i]);
 239                          $this->e[$i+1] = $s * $r;
 240                          $s = $this->e[$i] / $r;
 241                          $c = $p / $r;
 242                          $p = $c * $this->d[$i] - $s * $g;
 243                          $this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]);
 244                          // Accumulate transformation.
 245                          for ($k = 0; $k < $this->n; ++$k) {
 246                              $h = $this->V[$k][$i+1];
 247                              $this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h;
 248                              $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
 249                          }
 250                      }
 251                      $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
 252                      $this->e[$l] = $s * $p;
 253                      $this->d[$l] = $c * $p;
 254                  // Check for convergence.
 255                  } while (abs($this->e[$l]) > $eps * $tst1);
 256              }
 257              $this->d[$l] = $this->d[$l] + $f;
 258              $this->e[$l] = 0.0;
 259          }
 260  
 261          // Sort eigenvalues and corresponding vectors.
 262          for ($i = 0; $i < $this->n - 1; ++$i) {
 263              $k = $i;
 264              $p = $this->d[$i];
 265              for ($j = $i+1; $j < $this->n; ++$j) {
 266                  if ($this->d[$j] < $p) {
 267                      $k = $j;
 268                      $p = $this->d[$j];
 269                  }
 270              }
 271              if ($k != $i) {
 272                  $this->d[$k] = $this->d[$i];
 273                  $this->d[$i] = $p;
 274                  for ($j = 0; $j < $this->n; ++$j) {
 275                      $p = $this->V[$j][$i];
 276                      $this->V[$j][$i] = $this->V[$j][$k];
 277                      $this->V[$j][$k] = $p;
 278                  }
 279              }
 280          }
 281      }
 282  
 283      /**
 284       *    Nonsymmetric reduction to Hessenberg form.
 285       *
 286       *    This is derived from the Algol procedures orthes and ortran,
 287       *    by Martin and Wilkinson, Handbook for Auto. Comp.,
 288       *    Vol.ii-Linear Algebra, and the corresponding
 289       *    Fortran subroutines in EISPACK.
 290       *
 291       *    @access private
 292       */
 293      private function orthes()
 294      {
 295          $low  = 0;
 296          $high = $this->n-1;
 297  
 298          for ($m = $low+1; $m <= $high-1; ++$m) {
 299              // Scale column.
 300              $scale = 0.0;
 301              for ($i = $m; $i <= $high; ++$i) {
 302                  $scale = $scale + abs($this->H[$i][$m-1]);
 303              }
 304              if ($scale != 0.0) {
 305                  // Compute Householder transformation.
 306                  $h = 0.0;
 307                  for ($i = $high; $i >= $m; --$i) {
 308                      $this->ort[$i] = $this->H[$i][$m-1] / $scale;
 309                      $h += $this->ort[$i] * $this->ort[$i];
 310                  }
 311                  $g = sqrt($h);
 312                  if ($this->ort[$m] > 0) {
 313                      $g *= -1;
 314                  }
 315                  $h -= $this->ort[$m] * $g;
 316                  $this->ort[$m] -= $g;
 317                  // Apply Householder similarity transformation
 318                  // H = (I -u * u' / h) * H * (I -u * u') / h)
 319                  for ($j = $m; $j < $this->n; ++$j) {
 320                      $f = 0.0;
 321                      for ($i = $high; $i >= $m; --$i) {
 322                          $f += $this->ort[$i] * $this->H[$i][$j];
 323                      }
 324                      $f /= $h;
 325                      for ($i = $m; $i <= $high; ++$i) {
 326                          $this->H[$i][$j] -= $f * $this->ort[$i];
 327                      }
 328                  }
 329                  for ($i = 0; $i <= $high; ++$i) {
 330                      $f = 0.0;
 331                      for ($j = $high; $j >= $m; --$j) {
 332                          $f += $this->ort[$j] * $this->H[$i][$j];
 333                      }
 334                      $f = $f / $h;
 335                      for ($j = $m; $j <= $high; ++$j) {
 336                          $this->H[$i][$j] -= $f * $this->ort[$j];
 337                      }
 338                  }
 339                  $this->ort[$m] = $scale * $this->ort[$m];
 340                  $this->H[$m][$m-1] = $scale * $g;
 341              }
 342          }
 343  
 344          // Accumulate transformations (Algol's ortran).
 345          for ($i = 0; $i < $this->n; ++$i) {
 346              for ($j = 0; $j < $this->n; ++$j) {
 347                  $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
 348              }
 349          }
 350          for ($m = $high-1; $m >= $low+1; --$m) {
 351              if ($this->H[$m][$m-1] != 0.0) {
 352                  for ($i = $m+1; $i <= $high; ++$i) {
 353                      $this->ort[$i] = $this->H[$i][$m-1];
 354                  }
 355                  for ($j = $m; $j <= $high; ++$j) {
 356                      $g = 0.0;
 357                      for ($i = $m; $i <= $high; ++$i) {
 358                          $g += $this->ort[$i] * $this->V[$i][$j];
 359                      }
 360                      // Double division avoids possible underflow
 361                      $g = ($g / $this->ort[$m]) / $this->H[$m][$m-1];
 362                      for ($i = $m; $i <= $high; ++$i) {
 363                          $this->V[$i][$j] += $g * $this->ort[$i];
 364                      }
 365                  }
 366              }
 367          }
 368      }
 369  
 370      /**
 371       *    Performs complex division.
 372       *
 373       *    @access private
 374       */
 375      private function cdiv($xr, $xi, $yr, $yi)
 376      {
 377          if (abs($yr) > abs($yi)) {
 378              $r = $yi / $yr;
 379              $d = $yr + $r * $yi;
 380              $this->cdivr = ($xr + $r * $xi) / $d;
 381              $this->cdivi = ($xi - $r * $xr) / $d;
 382          } else {
 383              $r = $yr / $yi;
 384              $d = $yi + $r * $yr;
 385              $this->cdivr = ($r * $xr + $xi) / $d;
 386              $this->cdivi = ($r * $xi - $xr) / $d;
 387          }
 388      }
 389  
 390      /**
 391       *    Nonsymmetric reduction from Hessenberg to real Schur form.
 392       *
 393       *    Code is derived from the Algol procedure hqr2,
 394       *    by Martin and Wilkinson, Handbook for Auto. Comp.,
 395       *    Vol.ii-Linear Algebra, and the corresponding
 396       *    Fortran subroutine in EISPACK.
 397       *
 398       *    @access private
 399       */
 400      private function hqr2()
 401      {
 402          //  Initialize
 403          $nn = $this->n;
 404          $n  = $nn - 1;
 405          $low = 0;
 406          $high = $nn - 1;
 407          $eps = pow(2.0, -52.0);
 408          $exshift = 0.0;
 409          $p = $q = $r = $s = $z = 0;
 410          // Store roots isolated by balanc and compute matrix norm
 411          $norm = 0.0;
 412  
 413          for ($i = 0; $i < $nn; ++$i) {
 414              if (($i < $low) or ($i > $high)) {
 415                  $this->d[$i] = $this->H[$i][$i];
 416                  $this->e[$i] = 0.0;
 417              }
 418              for ($j = max($i-1, 0); $j < $nn; ++$j) {
 419                  $norm = $norm + abs($this->H[$i][$j]);
 420              }
 421          }
 422  
 423          // Outer loop over eigenvalue index
 424          $iter = 0;
 425          while ($n >= $low) {
 426              // Look for single small sub-diagonal element
 427              $l = $n;
 428              while ($l > $low) {
 429                  $s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]);
 430                  if ($s == 0.0) {
 431                      $s = $norm;
 432                  }
 433                  if (abs($this->H[$l][$l-1]) < $eps * $s) {
 434                      break;
 435                  }
 436                  --$l;
 437              }
 438              // Check for convergence
 439              // One root found
 440              if ($l == $n) {
 441                  $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
 442                  $this->d[$n] = $this->H[$n][$n];
 443                  $this->e[$n] = 0.0;
 444                  --$n;
 445                  $iter = 0;
 446              // Two roots found
 447              } elseif ($l == $n-1) {
 448                  $w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
 449                  $p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0;
 450                  $q = $p * $p + $w;
 451                  $z = sqrt(abs($q));
 452                  $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
 453                  $this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift;
 454                  $x = $this->H[$n][$n];
 455                  // Real pair
 456                  if ($q >= 0) {
 457                      if ($p >= 0) {
 458                          $z = $p + $z;
 459                      } else {
 460                          $z = $p - $z;
 461                      }
 462                      $this->d[$n-1] = $x + $z;
 463                      $this->d[$n] = $this->d[$n-1];
 464                      if ($z != 0.0) {
 465                          $this->d[$n] = $x - $w / $z;
 466                      }
 467                      $this->e[$n-1] = 0.0;
 468                      $this->e[$n] = 0.0;
 469                      $x = $this->H[$n][$n-1];
 470                      $s = abs($x) + abs($z);
 471                      $p = $x / $s;
 472                      $q = $z / $s;
 473                      $r = sqrt($p * $p + $q * $q);
 474                      $p = $p / $r;
 475                      $q = $q / $r;
 476                      // Row modification
 477                      for ($j = $n-1; $j < $nn; ++$j) {
 478                          $z = $this->H[$n-1][$j];
 479                          $this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j];
 480                          $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
 481                      }
 482                      // Column modification
 483                      for ($i = 0; $i <= $n; ++$i) {
 484                          $z = $this->H[$i][$n-1];
 485                          $this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n];
 486                          $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
 487                      }
 488                      // Accumulate transformations
 489                      for ($i = $low; $i <= $high; ++$i) {
 490                          $z = $this->V[$i][$n-1];
 491                          $this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n];
 492                          $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
 493                      }
 494                  // Complex pair
 495                  } else {
 496                      $this->d[$n-1] = $x + $p;
 497                      $this->d[$n] = $x + $p;
 498                      $this->e[$n-1] = $z;
 499                      $this->e[$n] = -$z;
 500                  }
 501                  $n = $n - 2;
 502                  $iter = 0;
 503              // No convergence yet
 504              } else {
 505                  // Form shift
 506                  $x = $this->H[$n][$n];
 507                  $y = 0.0;
 508                  $w = 0.0;
 509                  if ($l < $n) {
 510                      $y = $this->H[$n-1][$n-1];
 511                      $w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
 512                  }
 513                  // Wilkinson's original ad hoc shift
 514                  if ($iter == 10) {
 515                      $exshift += $x;
 516                      for ($i = $low; $i <= $n; ++$i) {
 517                          $this->H[$i][$i] -= $x;
 518                      }
 519                      $s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]);
 520                      $x = $y = 0.75 * $s;
 521                      $w = -0.4375 * $s * $s;
 522                  }
 523                  // MATLAB's new ad hoc shift
 524                  if ($iter == 30) {
 525                      $s = ($y - $x) / 2.0;
 526                      $s = $s * $s + $w;
 527                      if ($s > 0) {
 528                          $s = sqrt($s);
 529                          if ($y < $x) {
 530                              $s = -$s;
 531                          }
 532                          $s = $x - $w / (($y - $x) / 2.0 + $s);
 533                          for ($i = $low; $i <= $n; ++$i) {
 534                              $this->H[$i][$i] -= $s;
 535                          }
 536                          $exshift += $s;
 537                          $x = $y = $w = 0.964;
 538                      }
 539                  }
 540                  // Could check iteration count here.
 541                  $iter = $iter + 1;
 542                  // Look for two consecutive small sub-diagonal elements
 543                  $m = $n - 2;
 544                  while ($m >= $l) {
 545                      $z = $this->H[$m][$m];
 546                      $r = $x - $z;
 547                      $s = $y - $z;
 548                      $p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1];
 549                      $q = $this->H[$m+1][$m+1] - $z - $r - $s;
 550                      $r = $this->H[$m+2][$m+1];
 551                      $s = abs($p) + abs($q) + abs($r);
 552                      $p = $p / $s;
 553                      $q = $q / $s;
 554                      $r = $r / $s;
 555                      if ($m == $l) {
 556                          break;
 557                      }
 558                      if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) <
 559                          $eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) {
 560                          break;
 561                      }
 562                      --$m;
 563                  }
 564                  for ($i = $m + 2; $i <= $n; ++$i) {
 565                      $this->H[$i][$i-2] = 0.0;
 566                      if ($i > $m+2) {
 567                          $this->H[$i][$i-3] = 0.0;
 568                      }
 569                  }
 570                  // Double QR step involving rows l:n and columns m:n
 571                  for ($k = $m; $k <= $n-1; ++$k) {
 572                      $notlast = ($k != $n-1);
 573                      if ($k != $m) {
 574                          $p = $this->H[$k][$k-1];
 575                          $q = $this->H[$k+1][$k-1];
 576                          $r = ($notlast ? $this->H[$k+2][$k-1] : 0.0);
 577                          $x = abs($p) + abs($q) + abs($r);
 578                          if ($x != 0.0) {
 579                              $p = $p / $x;
 580                              $q = $q / $x;
 581                              $r = $r / $x;
 582                          }
 583                      }
 584                      if ($x == 0.0) {
 585                          break;
 586                      }
 587                      $s = sqrt($p * $p + $q * $q + $r * $r);
 588                      if ($p < 0) {
 589                          $s = -$s;
 590                      }
 591                      if ($s != 0) {
 592                          if ($k != $m) {
 593                              $this->H[$k][$k-1] = -$s * $x;
 594                          } elseif ($l != $m) {
 595                              $this->H[$k][$k-1] = -$this->H[$k][$k-1];
 596                          }
 597                          $p = $p + $s;
 598                          $x = $p / $s;
 599                          $y = $q / $s;
 600                          $z = $r / $s;
 601                          $q = $q / $p;
 602                          $r = $r / $p;
 603                          // Row modification
 604                          for ($j = $k; $j < $nn; ++$j) {
 605                              $p = $this->H[$k][$j] + $q * $this->H[$k+1][$j];
 606                              if ($notlast) {
 607                                  $p = $p + $r * $this->H[$k+2][$j];
 608                                  $this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z;
 609                              }
 610                              $this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
 611                              $this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y;
 612                          }
 613                          // Column modification
 614                          for ($i = 0; $i <= min($n, $k+3); ++$i) {
 615                              $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1];
 616                              if ($notlast) {
 617                                  $p = $p + $z * $this->H[$i][$k+2];
 618                                  $this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r;
 619                              }
 620                              $this->H[$i][$k] = $this->H[$i][$k] - $p;
 621                              $this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q;
 622                          }
 623                          // Accumulate transformations
 624                          for ($i = $low; $i <= $high; ++$i) {
 625                              $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1];
 626                              if ($notlast) {
 627                                  $p = $p + $z * $this->V[$i][$k+2];
 628                                  $this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r;
 629                              }
 630                              $this->V[$i][$k] = $this->V[$i][$k] - $p;
 631                              $this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q;
 632                          }
 633                      }  // ($s != 0)
 634                  }  // k loop
 635              }  // check convergence
 636          }  // while ($n >= $low)
 637  
 638          // Backsubstitute to find vectors of upper triangular form
 639          if ($norm == 0.0) {
 640              return;
 641          }
 642  
 643          for ($n = $nn-1; $n >= 0; --$n) {
 644              $p = $this->d[$n];
 645              $q = $this->e[$n];
 646              // Real vector
 647              if ($q == 0) {
 648                  $l = $n;
 649                  $this->H[$n][$n] = 1.0;
 650                  for ($i = $n-1; $i >= 0; --$i) {
 651                      $w = $this->H[$i][$i] - $p;
 652                      $r = 0.0;
 653                      for ($j = $l; $j <= $n; ++$j) {
 654                          $r = $r + $this->H[$i][$j] * $this->H[$j][$n];
 655                      }
 656                      if ($this->e[$i] < 0.0) {
 657                          $z = $w;
 658                          $s = $r;
 659                      } else {
 660                          $l = $i;
 661                          if ($this->e[$i] == 0.0) {
 662                              if ($w != 0.0) {
 663                                  $this->H[$i][$n] = -$r / $w;
 664                              } else {
 665                                  $this->H[$i][$n] = -$r / ($eps * $norm);
 666                              }
 667                          // Solve real equations
 668                          } else {
 669                              $x = $this->H[$i][$i+1];
 670                              $y = $this->H[$i+1][$i];
 671                              $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
 672                              $t = ($x * $s - $z * $r) / $q;
 673                              $this->H[$i][$n] = $t;
 674                              if (abs($x) > abs($z)) {
 675                                  $this->H[$i+1][$n] = (-$r - $w * $t) / $x;
 676                              } else {
 677                                  $this->H[$i+1][$n] = (-$s - $y * $t) / $z;
 678                              }
 679                          }
 680                          // Overflow control
 681                          $t = abs($this->H[$i][$n]);
 682                          if (($eps * $t) * $t > 1) {
 683                              for ($j = $i; $j <= $n; ++$j) {
 684                                  $this->H[$j][$n] = $this->H[$j][$n] / $t;
 685                              }
 686                          }
 687                      }
 688                  }
 689              // Complex vector
 690              } elseif ($q < 0) {
 691                  $l = $n-1;
 692                  // Last vector component imaginary so matrix is triangular
 693                  if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) {
 694                      $this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1];
 695                      $this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1];
 696                  } else {
 697                      $this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q);
 698                      $this->H[$n-1][$n-1] = $this->cdivr;
 699                      $this->H[$n-1][$n]   = $this->cdivi;
 700                  }
 701                  $this->H[$n][$n-1] = 0.0;
 702                  $this->H[$n][$n] = 1.0;
 703                  for ($i = $n-2; $i >= 0; --$i) {
 704                      // double ra,sa,vr,vi;
 705                      $ra = 0.0;
 706                      $sa = 0.0;
 707                      for ($j = $l; $j <= $n; ++$j) {
 708                          $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1];
 709                          $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
 710                      }
 711                      $w = $this->H[$i][$i] - $p;
 712                      if ($this->e[$i] < 0.0) {
 713                          $z = $w;
 714                          $r = $ra;
 715                          $s = $sa;
 716                      } else {
 717                          $l = $i;
 718                          if ($this->e[$i] == 0) {
 719                              $this->cdiv(-$ra, -$sa, $w, $q);
 720                              $this->H[$i][$n-1] = $this->cdivr;
 721                              $this->H[$i][$n]   = $this->cdivi;
 722                          } else {
 723                              // Solve complex equations
 724                              $x = $this->H[$i][$i+1];
 725                              $y = $this->H[$i+1][$i];
 726                              $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
 727                              $vi = ($this->d[$i] - $p) * 2.0 * $q;
 728                              if ($vr == 0.0 & $vi == 0.0) {
 729                                  $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
 730                              }
 731                              $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
 732                              $this->H[$i][$n-1] = $this->cdivr;
 733                              $this->H[$i][$n]   = $this->cdivi;
 734                              if (abs($x) > (abs($z) + abs($q))) {
 735                                  $this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x;
 736                                  $this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x;
 737                              } else {
 738                                  $this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q);
 739                                  $this->H[$i+1][$n-1] = $this->cdivr;
 740                                  $this->H[$i+1][$n]   = $this->cdivi;
 741                              }
 742                          }
 743                          // Overflow control
 744                          $t = max(abs($this->H[$i][$n-1]), abs($this->H[$i][$n]));
 745                          if (($eps * $t) * $t > 1) {
 746                              for ($j = $i; $j <= $n; ++$j) {
 747                                  $this->H[$j][$n-1] = $this->H[$j][$n-1] / $t;
 748                                  $this->H[$j][$n]   = $this->H[$j][$n] / $t;
 749                              }
 750                          }
 751                      } // end else
 752                  } // end for
 753              } // end else for complex case
 754          } // end for
 755  
 756          // Vectors of isolated roots
 757          for ($i = 0; $i < $nn; ++$i) {
 758              if ($i < $low | $i > $high) {
 759                  for ($j = $i; $j < $nn; ++$j) {
 760                      $this->V[$i][$j] = $this->H[$i][$j];
 761                  }
 762              }
 763          }
 764  
 765          // Back transformation to get eigenvectors of original matrix
 766          for ($j = $nn-1; $j >= $low; --$j) {
 767              for ($i = $low; $i <= $high; ++$i) {
 768                  $z = 0.0;
 769                  for ($k = $low; $k <= min($j, $high); ++$k) {
 770                      $z = $z + $this->V[$i][$k] * $this->H[$k][$j];
 771                  }
 772                  $this->V[$i][$j] = $z;
 773              }
 774          }
 775      } // end hqr2
 776  
 777      /**
 778       *    Constructor: Check for symmetry, then construct the eigenvalue decomposition
 779       *
 780       *    @access public
 781       *    @param A  Square matrix
 782       *    @return Structure to access D and V.
 783       */
 784      public function __construct($Arg)
 785      {
 786          $this->A = $Arg->getArray();
 787          $this->n = $Arg->getColumnDimension();
 788  
 789          $issymmetric = true;
 790          for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {
 791              for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {
 792                  $issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
 793              }
 794          }
 795  
 796          if ($issymmetric) {
 797              $this->V = $this->A;
 798              // Tridiagonalize.
 799              $this->tred2();
 800              // Diagonalize.
 801              $this->tql2();
 802          } else {
 803              $this->H = $this->A;
 804              $this->ort = array();
 805              // Reduce to Hessenberg form.
 806              $this->orthes();
 807              // Reduce Hessenberg to real Schur form.
 808              $this->hqr2();
 809          }
 810      }
 811  
 812      /**
 813       *    Return the eigenvector matrix
 814       *
 815       *    @access public
 816       *    @return V
 817       */
 818      public function getV()
 819      {
 820          return new Matrix($this->V, $this->n, $this->n);
 821      }
 822  
 823      /**
 824       *    Return the real parts of the eigenvalues
 825       *
 826       *    @access public
 827       *    @return real(diag(D))
 828       */
 829      public function getRealEigenvalues()
 830      {
 831          return $this->d;
 832      }
 833  
 834      /**
 835       *    Return the imaginary parts of the eigenvalues
 836       *
 837       *    @access public
 838       *    @return imag(diag(D))
 839       */
 840      public function getImagEigenvalues()
 841      {
 842          return $this->e;
 843      }
 844  
 845      /**
 846       *    Return the block diagonal eigenvalue matrix
 847       *
 848       *    @access public
 849       *    @return D
 850       */
 851      public function getD()
 852      {
 853          for ($i = 0; $i < $this->n; ++$i) {
 854              $D[$i] = array_fill(0, $this->n, 0.0);
 855              $D[$i][$i] = $this->d[$i];
 856              if ($this->e[$i] == 0) {
 857                  continue;
 858              }
 859              $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
 860              $D[$i][$o] = $this->e[$i];
 861          }
 862          return new Matrix($D);
 863      }
 864  }


Generated: Thu Aug 11 10:00:09 2016 Cross-referenced by PHPXref 0.7.1